Previous Year: Year 3	<u>Current Year: Year 5</u>	Next Year: KS3
Compare how things move on different	Explain that unsupported objects fall	• Magnetic fields by plotting with compass,
surfaces.	towards the Earth because of the force of	representation by field lines.
• Notice that some forces need contact	gravity acting between the Earth and the	• Earth's magnetism, compass and
between two objects, but magnetic forces can	falling object.	navigation.
act at a distance.	• Identify the effects of air resistance, water	• Forces as pushes or pulls, arising from the
• Observe how magnets attract or repel each	resistance and friction, that act between	interaction between two objects.
other and attract some materials and not	moving surfaces.	• Using force arrows in diagrams, adding
others.	• Recognise that some mechanisms, including	forces in one dimension, balanced and
• Compare and group together a variety of	levers, pulleys and gears, allow a smaller	unbalanced forces.
everyday materials on the basis of whether	force to have a greater effect.	• Moment as the turning effect of a force.
they are attracted to a magnet, and identify		• Forces: associated with deforming objects;
some magnetic materials.	<u>How can the learning be applied?</u>	stretching and squashing – springs; with
• Describe magnets as having two poles.		rubbing and friction between surfaces, with
• • Predict whether two magnets will	• Investigate the effect of friction in a range	pushing things out of the way; resistance to
attract or repel each other, depending on	of contexts e.g. trainers, bathmats, mats for	motion of air and water. • Forces measured in
which poles are facing.	a helter-skelter.	Newtons, measurements of stretch or
_ <u>Learning Values:</u>	• Investigate the effects of water resistance.	compression as force is changea.
-respect	in a range of contexts e.g. dropping shapes	<u>Key learning for the topic:</u>
respect	through writer and nulling shapes such as	A farce causes an adject to start moving stop moving
-responsible	hants along the surface of water	A porce causes ar object to said moving, sup moving,
	bours, along the surface of water.	that acts at a distance. Example in a culled to the Earth h
-resourceful	•Investigate the effects of air resistance in a	that acts at a distance. Everything is putted to the Earth b
-resilient	range of contexts e.g. parachites, spinners,	gravity. This causes unsupported objects to fail. Air
	sails on boats.	resistance, water resistance and friction are contact forces
-risk taker	• Explore how levers, pulleys and gears	that act between moving surfaces. The object may be
	work.	moving through the air or water, or the air and water may
<u>Possible stimulus to teach:</u>	• Make a product that involves a lever, pulley	be moving over a stationary object. A mechanism is a
	or gear.	device that allows a small force to be increased to a large
	• Create a timer that uses gravity to move a	force. The pay back is that it requires a greater movement
	ball.	The small force moves a long distance and the resulting
	• Research how the work of scientists such	large force moves a small distance, e.g. a crowbar or bott
	as Galileo Galilei and Isaac Newton helped	top remover. Pulleys, levers and gears are all mechanisms
	to develop the theory of gravitation.	also known as simple machines.

Forces Progression map Year 5